
Matchmaking Scientific Workflows in Grid Environments 

Abstract In this paper we analyze the scientific workflow matchmaking problem in Grid environments and combine the 

workflow mapping and scheduling together. Base on the characteristics of Grids, a new resource model is proposed. 

Motivated by the observations that not all jobs can run on all resources and resource critical jobs should be considered with 

their ancestor and descendant jobs when mapping, a novel resource critical algorithm is designed based on a new Grid 

resource model. By experiments, it is proved to have good performance by experiments. 
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1. Introduction 

Grids are attracting more and more scientific applications, such as those in earthquake science [1], computational 

chemical informatics [2], physics, astronomy, etc. These applications often include parallel computing and processing of 

large size data in steps. Because of the various requirements of jobs, the large job number and the heterogeneity of resources, 

mapping the large-scale collaborative workflows onto the heterogeneous resources in Grids is a non-trivia problem. 

In the QuakeSim project [1], we are working on mapping scientific workflows onto TeraGrid resources for execution. 

There are some jobs which cannot run on all resources. For example, a program named GeoFEST [3], which can only run on 

IA-32 architecture and requires Pyramid library; while only 3 out of 15 TeraGrid resources can satisfy its requirements. There 

are already some works in the workflow scheduling field but this kind of problem is not directly addressed. 

In this paper, according to our target earthquake workflows and execution environment, TeraGrid [4], we make a few 

distinct assumptions. First, many works [5, 6] assume that a machine can only execute one job at a same time, i.e. it is 

exclusive. This holds true on a single processor while not true for batch queuing systems in a cluster. Once two jobs have no 

data or logic dependency, they can probably run simultaneously on a computing resource (if not exceeding any limit). Base 

on this observation, we propose a new resource model. Second, previous works only assume that jobs can run on every 

resource and the heterogeneity of resources only makes jobs’ running time different. While in realistic Grids, due to access 

control policies, different software installation or version incompatibility, and particular hardware required (e.g. special 

visualization cards), etc, it’s quite common that some jobs can never run on certain machines. This phenomenon makes the 

workflow scheduling in Grids quite unique and challenging. This is also why we call our workflow mapping as matchmaking, 

since it is not only scheduling the jobs onto resources, but prior to that it matches the jobs with the resources which satisfy 

their requirements. The term matchmaking is borrowed from Condor [7], but in Condor matchmaking is only find resources 

for single jobs, while our matchmaking system is target for finding resources for workflows. Under this assumption, the jobs 

which can run on every resource are more flexible than the resource critical jobs which can only run on just a few resources. 

For a resource critical job, considering the more resource flexible jobs before and after it as a group for mapping should be 

better than mapping them individually. This is the key idea for our resource critical workflow matchmaking algorithm. 

Our main contributions are as follows. First, we propose a new resource model for cluster node in Grids; second, we 

propose a resource critical algorithm for workflow matchmaking, which is proved to have good performance by experiments. 

The remainder of the paper is organized as follows. The next section describes related work. Section 3 shows the system 

architecture of the workflow matchmaking system in Grids. The workflow matchmaking problem in Grids is formulized, 

resource model is set up and a resource critical algorithm is proposed in Section 4. In Section 5, the algorithm is evaluated 

under varying experimental settings. Finally, Section 6 concludes the paper. 

2. Related Work 

There is a large amount of work about DAG workflow scheduling [8]. In recent years, much work focuses on scientific 



workflow scheduling and heterogeneous environments, especially Grids [9, 10, 11, 12, 13, 14, 15 and 16]. Most of them only 

assume that jobs can run on every resource and the heterogeneity of resources mainly makes jobs’ running time different. 

While in realistic Grids, due to access control policies, different software installation or version incompatibility, storage 

limitation, etc, it’s quite common that some jobs can never run on certain machines. Some of them, such as HEFT in [17] and 

the hybrid heuristic in [6], are based on the assumption that no two jobs can be executed at the same time on a resource. But 

in Grid environments, the common resources are clusters, in which multiple jobs can run concurrently. In [18], the authors do 

take the storage constraint on resources into consideration. This can be easily incorporated into our model by defining that if 

a resource cannot accommodate the data files needed for a job, the job cannot run on the resource. 

3. System Architecture 

 

Fig. 1. System Architecture. 

This work is intended to map scientific workflows onto resources in Grids. Fig. 1 shows our implementation of a 

workflow matchmaking system, which reuses services from several existing projects. Since the target execution environment 

is TeraGrid, which use the Globus Toolkit [19] to provide remote job submission and management, we select Condor 

DAGMan [20] to describe and submit workflow jobs with its support by Condor-G [21]. That is, we use Condor-G as a client 

to Globus services. 

Two services are used to get resource information required by workflow matchmaking. Static information, e.g. CPU 

number, OS, etc, is retrieved through GPIRQuery, the web service provided by GPIR [22]. While dynamic information, such 

as network bandwidth, host load, etc, is acquired by NWS [23]. QBETS [24] can predict execution time of jobs on resources. 

All these services are installed and running on TeraGrid to serve queries. 

The input of the workflow mapping system is a description about the workflow. It follows the grammar of DAGMan and 

Condor-G on submitting, except that it does not need to specify the actual location information about which resources the 

jobs are about to run on. The mapping system fills out the blanks and submits the completed submit files to DAGMan for 

execution. 

4. A Resource Critical Algorithm for Workflow Matchmaking 

4.1 Problem Statement 

The core of a workflow matchmaking system is an algorithm for workflow matchmaking. This sub-section gives the 

formal description of the optimization problem. 

Given a DAG (Directed Acyclic Graph) of the workflow representation of the application, G = (V, E), V = {v1, …, vN} is 

the set of jobs in the workflow and N is the total job number. volij denotes the volume of data generated by i and is required 

by j, i, j V and ij E. 



Let the set of Grid resources be R = {r1, …, rm} and M is the number of resources (machines) in the Grid. cij is the 

computation cost of job i on resource j. Let C(G, R) ={cij|i V, j R}. If job i cannot run on resource j, cij is infinity. 

In batch systems, after they are submitted, jobs typically have to wait some time before actually running; wij is the 

waiting time for job i on resource j. Let W(G, R) ={wij|i V, j R}. Using QBETS [24] we can get predicted waiting times for 

jobs on TeraGrid resources. 

trij is the transfer rate from resource i to j, i,  j R. 
 
is the communication cost between i and j, when i is executed on 

k and j on l, and is derived by dividing , i, j V, k, j R. When i and j are executed on a same resource, the 

communication cost is zero. Let T(G, R) = { |i, j V, k, l R}. 

Let parents(v) be the parent(s) of the job v and children(v) be the child(children) of the job v, Vv∈ . These functions can 

be inferred from the DAG. Here, we assume that the DAG has a single entry node v0 which has no parent, i.e. parents(v0) =  

and a single exit node vN-1 which has no child, i.e. children(vN-1) = ; any of the other nodes has at least one parent and one 

child. 

Assume the function map(v): V→R is the mapping from the jobs to the resources. 

Let EST(v, r) and EFT(v, r) be the earliest start time and earliest finish time of job v on resource r respectively. For the 

entry node, EST(v0, r) = 0, r R. For the other jobs, EST(v, r) means the earliest time at which all of v’s parent jobs have 

finished, the data it requires have been transferred to resource r and it is ready to run. Here, we assume that the data 

transferring and the job waiting can be concurrent. Thus it can be derived that 

. Here u is a parent of v,  is the 

earliest finish time of node u and  is the bigger of the transmission time from u to v and the waiting 

time of v on resource r. EFT(v, r) = EST(v, r) + cv, r. The makespan, i.e. the overall execution time of the workflow, is the 

earliest finish time of the exit job, vN-1, i.e. EFT(vN-1). 

The workflow matchmaking problem is summarized as follows: 

Given {G, R, C(G, R), W(G, R), T(G, R)}. Select the mapping map(v) to minimize the makespan of the workflow, EFT(vN-1). 

4.2 Resource Model 

 In early work, resource in a heterogeneous computing environment is modeled as a single processor on which no two 

jobs can run concurrently. While in Grids, the computing resources are mainly clusters, many but not infinite jobs can run at 

one time. We propose a new resource model to describe resources in workflow matchmaking. 

 Each node in a Grid has a capability number, such as the CPU number of the cluster, and each job has a required 

capability number, such as the number of CPUs it need. At any time, the sum of the required capability numbers of the jobs 

running on a resource cannot exceed the resource’s capability. It is true that more jobs can run on a cluster concurrently, but 

the computing time of each job will suffer due to frequent context switching. 

4.3 Mechanism and Algorithm 



 Since it has been proved that the workflow matchmaking problem is NP-complete, we try to find a good heuristic to 

solve it. 

 The key idea of the algorithm is to exploit the fact that some jobs can only run on certain resources, which is quite 

different from the assumption in previous work. For example, in the workflows of QuakeSim project there is a program 

named GeoFEST [3], which can only run on IA-32 architecture and requires Pyramid library; while only 3 out of 15 TeraGrid 

resources can satisfy its requirements. When scheduling a job, existing algorithms only consider the schedule time of this job 

and previous jobs. While if the later jobs can only run a few resources and are not taken into consideration at the scheduling 

of jobs before it, the result might be less optimal. 

 The proposed algorithm is given in Fig. 2. The input of the algorithm is a DAG G and two matrixes: W gives the 

execution cost of each node on each machine and C gives the communication cost between two nodes/jobs connected by an 

edge on all combinations of different resources where two nodes can run (the description of the resource and the requirement 

of the job match); the cost is zero if the two jobs are executed by the same machine. 

 Since a job may not run on all resource, we define MR(v) as the match ratio of the number of resources on which the job 

v can run and the number of all resources, . By checking the computation cost array, it is easy to get MR(v) by 

calculating the number of cvr which is not equal to infinity, . 

 The algorithm consists of three phases: ranking, group creation, scheduling a group. 

 Fig. 2. The resource critical workflow matchmaking algorithm. 

 In the first step, a weight is assigned to each node and edge of the DAG, which is the mean value of all possible values. 

The weight of a node is the mean of its computation cost on all matched resources. As stated in the previous section, in most 

1. Set the computation costs of jobs and communication costs of edges with mean values. 

2. Compute the rank for all jobs by traversing DAG upward, starting from the exit node. 

3. Sort the jobs in a non-ascending order of the rank values. 

4. Group nodes. 

5.     G0 = { }; i = 0. 

6.     Scan nodes in the order of their rank values. 

7.         If current node v has not been grouped 

8.         then 

9.             Add v to Gi. 

10.             For all v’s descendants, u 

11.                 If all ancestors of u have been grouped and all nodes on the path from v to u is 

in Gi and u’s match ratio MR(u) <  

12.                     add u to Gi. 

13.             Endfor 

14.         i++; Gi = { }. 

15.         Endif 

16.     Keep scanning until there are no more nodes. 

17. For all groups, Gi, in ascending order of i. 

18.     Schedule the jobs in Gi. 

19.     Choose the schedule with the smallest EFTs for the end nodes. 

20. Endfor 



Grids, such as Condor-G and Globus Toolkit based Grids, the data transferring and the job waiting can be concurrent, thus the 

weight of an edge should be the mean of the maximum of the communication cost and the waiting time of all possible 

combinations of resources (a pair of resources is a possible combination for an edge only if both of the nodes associated with 

the edge can run on the corresponding resource).  

Using this weight, upward ranking is computed and a rank value is given to each node. The rank value, ranki, of a node i 

is recursively defined as follows: 

, 

Where nwi is the weight of node i, children(i) is the set of children of node i and ewij is the weight of the edge connecting 

node i and j. 

 In the second step, nodes are sorted in non-ascending order of their rank values. Tie-breaking is done randomly. Based 

on this order, nodes are divided into groups. The first node (i.e. the node with the highest rank value) is added to a group 

numbered 0. Check all its children if all ancestors of the child are grouped, i.e. which have been assigned resource when this 

group is being mapped, and the match ratio of the child is below a certain valve . If so, add the child node into the group, 

mark it as grouped and check its children further on. If no more such a node is found, make the next ungrouped node a new 

group, and so on. The outcome of this process is a set of ordered group, each of which consists of a node and its descendants 

on the path to whom the match ratios of the nodes are all lower than the valve . 

 In the third step, a group of nodes are mapped, where any algorithm for scheduling a DAG could be used. Since when 

scheduling a group, the mapping is probably incomplete, the makespan of the whole workflow is not a proper metric to value 

different assignments. Given a mapping, an end node is defined as a node either which has no children or whose children all 

have not been mapped yet. Comparing two mappings, the one with smaller largest EFT of all end nodes is preferred; if they 

have the same largest EFT, the one with smaller second largest EFT is better; and so on. If all EFTs of the end nodes are the 

same, choose either of them randomly. So far, we adopt an enumerative algorithm to try all combinations of resources for a 

group and choose the one with the best EFTs of all end nodes. 

On one side, with the valve  properly set, the size of a group is not large; on the other side, since the match ratios of 

nodes in a group, except the ancestor, are lower than a constant , the number of combinations of resource assigning are not 

many. The pruning technology in branch and bound algorithms can also be used to reduce time. In practice, the running time 

is insignificant, since there are only low-cost operations involved in the algorithm. 

4.5 Comparative Algorithm 

Since we adopt different resource model and assumptions, most of the existing workflow scheduling approaches is not 

applicable. The minimum EFT algorithm is simple and easy to be extended to our resource model as well as satisfy our 

assumptions. Maybe some other algorithms can also be adapted to our resource model and assumptions, but revision to their 

core algorithms is needed, which costs a lot of time and endeavor and will be our future work. 

In the minimum EFT algorithm, nodes are sorted in non-ascending order of their rank values in the same way as the first 

two steps of the resource critical algorithm, shown in section 4.2. Then scan nodes in the order of their rank values. For the 

each current node, always choose the resource which makes it finish earliest. 

5. Experimental Evaluation 

This section evaluates our resource critical workflow matchmaking algorithm against the minimum EFT algorithm. First, 

the settings of the experiments are described. Then we define the metrics for evaluation. At last the simulation results are 



showed and discussed. This section describes results from modeling that we have used to validate our algorithm for typical 

usage scenarios in the QuakeSim and CICC project, which involve parameter sweeps (detailed finite element models of 

earthquake faults in the Western United States, small molecule structure calculations and docking onto proteins).  The 

individual nodes in the sweep involve parallelized codes and are computationally intensive. 

5.1 Settings 

 

Fig. 3. The structure of a parameter sweep DAG. 

Many factors influence the performance of a workflow matchmaking system in Grids. 

� DAG Generator 

We generate parameter sweep DAGs, whose structure is shown in Fig. 3. Every DAG has one start node and one end 

node. Jobs on the same level in different branches have same resource requirements, i.e. they can run on the same set of 

resources, and similar execution time. We vary the branch number and the depth respectively from 4 to 12 and from 8 to 

24, and correspondingly the number of node are from 34 to 290. 

� Heterogeneity Model 

The heterogeneity model we adopt is based on the loosely consistent heterogeneity model, also called the proportional 

computation cost model in [5] as well as incorporates the practical resource information from TeraGrid. In the original 

loosely consistent heterogeneity model, a random number between 0.5 and 1 is first generated as a factor indicating the 

computational power of each machine; then the cost for a given job on a given machine is within 5% of the product of 

this number and a baseline computation cost for each job (selected randomly). In our revised model, there are 15 

resources and instead of generated randomly, the factors indicating their computational power are the same as they are 

in TeraGrid. 

The base execution time of a job is chosen using a random uniform distribution over the interval [10, 100]. 

� Match ratio 

This is a new factor introduced by considering the fact that some jobs can never run on certain resources. The match 

ratio for a job is the ratio of the matched and total resource numbers. The ratios are randomly generated among the 

values from 0 to 1 while a job at least has one matched resource on which it can run. 

� Communication Bandwidth 

The communication bandwidth between any two resources is a random number between 5M/s and 300M/s. This is the 

bandwidth range we measured among resources in TeraGrid. 

� Communication-to-Computation-Ratio (CCR) 

CCR of a parallel program is defined as its average communication cost divided by its average computation cost on a 

given system. If a graph is with a very low CCR, it can be considered as a computation intensive application. 

� Match Ratio Threshold (MRT) 

This value is used by the resource critical algorithm to decide which nodes should be grouped together for mapping. If 
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MRT is so small that no resource’s match ratio below it, every node is a group and the resource critical algorithm acts 

the same as the minimum EFT algorithm. If MRT is too large, the groups will expand, for example, if MRT = 1, all 

nodes will form one group; to find the best solution for a big group is time consuming. In the experiments, we set MRT 

from 0.1 to 0.5. 

For a given branch number and a given depth, we generate 200 DAGs with their own job computing times, job-resource 

match ratios and resource communication bandwidths. A DAG with its corresponding job computing times, job-resource 

math ratios and resource communication bandwidths is called a case. With each combination of branch number, depth, CCR 

and MRT, these two algorithms will be run on the 200 cases of the corresponding branch number and depth. 

5.2 Metrics 

Two metrics are used to evaluate the algorithms – difference ratio and average improvement ratio. 

� Difference Ratio 

First, we define a metric named Normalized Schedule Length (NSL) [25], also called Schedule Length Ratio (SLR) [17]. 

NSL is the ratio of the makespan divided by a fixed cost of the critical path. 
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The denominator is the sum of computation costs on the critical path and is a lower bound on the schedule length. Since 

no communication cost is considered, such a lower bound is probably not possible to achieve and the calculated 

schedule length should be larger than this bound. 

Our resource critical algorithm (Section 4) does not always outperform the minimum EFT algorithm. The difference 

ratio is the ratio of the difference of NSLs for two algorithms and the bigger NSL of two. If a difference ratio is below 

zero, the NSL of the resource critical algorithm is larger than that of the minimum EFT algorithm; if it is above zero, it 

shows that the resource critical algorithm has better mapping result than the EFT algorithm if it is equal to zero, the two 

algorithms perform the same. 

� Average Improvement Ratio 

As its name shows, the average improvement ratio is the average of difference ratios of all cases in a certain setting. 

5.3 Results 

In the first set of experiments, the branch numbers and the depth numbers of the DAGs are all set as 4 and 8 respectively, 

i.e. the node number is 34. The other settings have similar results. 

The influence of Match Ratio Threshold (MRT) on difference ratio is shown in Fig. 4. Here CCR 

(Communication-to-Computation-Ratio) = 1.0. It can be noticed that in some cases, the resource critical algorithm performs 

worse than the minimum EFT algorithm; in some cases, they perform the same; while in most cases, it outperforms the 

minimum EFT algorithm. The reason for these worse cases is that when mapping a group, the resource critical algorithm only 

considers information about the nodes in the group and the nodes which have already been mapped. It always minimizes the 

finish times of current nodes while sometimes compromising the finish times of current nodes can achieve better finish time 

of the children nodes in the long run. 

In Fig. 5, the average improvement ratios of 200 cases are shown. As the MRT grows, the average improvement ratio of 

the resource critical algorithm over the minimum algorithm grows from 6.31% to 23.13%. Combine these two figures 

together, it can be concluded that the bigger the MRT is, the better the difference ratios are. MRT is used to control which 

nodes should be grouped and mapped together: the bigger it is, the more nodes could be grouped together, thus the better 

chance is to find a better mapping. 

Fig. 6 gives the difference ratios of 200 cases under different CCR values with MRT = 0.5. For all CCRs, in 7.5% - 8.5% 

cases among all 200 cases the resource critical algorithm performs worse than the minimum EFT algorithm; in 13% - 19% 



cases they perform the same; in 72% - 78% cases, the former outperforms the later. In Fig. 7, the average improvement ratio 

increases from 11.65% to 23.69% as the CCR increases. This shows that the resource critical algorithm works better where 

communication cost plays a heavier role. In the extreme circumstance that there is no communication cost, our algorithm will 

degrade to the minimum EFT algorithm. 

 In the second set of experiments, we discuss the influence of the branch number, the depth and the node number on the 

performance of these algorithms. Here CCR (Communication-to-Computation-Ratio) = 1.0 and Match Ratio Threshold (MRT) 

= 0.5. 

 First, the depth of the workflows is set as 24 and the branch number varies from 4 to 12. As Fig. 8 shows, the average 

improvement ratio does not fluctuate much around 45%. This is decided by the characteristic of the parameter sweep 

applications: the branches are independent from each other except sharing the same start and end nodes, thus the branch 

number does not influence grouping much and correspondingly not influence mapping much. 

 Second, we set the branch number of the workflows as 4 and vary the depth from 8 to 24. As seen from Fig. 9, the 

average improvement ratio of the resource critical algorithm over the minimum EFT algorithm increases from 23.13% to 

43.45% as the depth increases. This is because the longer the depth, the more chances that more nodes can group together to 

find the best mapping by trying all possible combinations. 

 

Fig. 4. Difference ratio under various MRTs with CCR=1. 

 

Fig. 5. Average improvement ratio under various MRTs with 

CCR=1. 

 

Fig. 6. Difference ratio under various CCRs with MRT=0.5. 

 

Fig. 7. Average improvement ratio under various CCRs with 

MRT=0.5. 



 

Fig. 8. Average improvement ratio under various branch numbers 

with CCR=1.0, MRT=0.5, depth=24. 

 

Fig. 9. Average improvement ratio under various depths with 

CCR=1.0, MRT=0.5, branch number=4. 

6. Conclusion and Future Work 

In this paper, we investigate the problem of matchmaking scientific workflow onto resources in Grid environments. We 

combine the workflow mapping and scheduling together and present a new resource model to formalize the problem. By 

exploiting the fact that some jobs can only run on some resources, we propose a novel resource critical workflow mapping 

algorithm, which take advantage of the fact that some jobs can only run on a small number of resources and mapping them 

together with their ancestor jobs can achieve better mapping results. By modeling experiments, we discuss the factors affect 

the performance of the algorithm. And it has been demonstrated that the resource critical algorithm outperform the minimum 

EFT algorithm in various conditions. 

The work described in this paper is intended to provide theoretical foundations for our approach and validate our 

algorithm (Section 4.3) for realistic scenarios. We are currently working to complete the deployment of the system for 

specific high performance parameter sweep problems from the QuakeSim and CICC projects. 

This work is funded by the National Aeronautics and Space Administration’s Advanced Information Systems Technology 

program. 
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